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ABSTRACT

In this project we review discuss the methodology involving inference using conformal prediction
proposed by Candès et al. (2023) which can be used with any survival prediction methods to produce
calibrated, covariate-dependent lower predictive bounds on survival times. Since conformal prediction
is a powerful but relatively new tool for inference, we discuss the basic concepts related to conformal
prediction for more rudimentary models before motivating ourselves to apply similar techiques in the
survival analysis regime. In this project we talk about generation of lower predictive bounds with
almost exact coverage and discuss an algorithm adapted from equivalent regression model approach
and its application in the survival model setup.

1 Introduction and Motivation

1.1 Introduction to Conformal Prediction

The goal of any prediction algorithm is to generate prediction sets for unknown responses based on observed covariates
with a proper pre-determined level of coverage. More precisely, let (Xi, Yi) ∈ Rd × R, i = 1, . . . , n denote training
data. We further assume that the {(Xi, Yi)}ni=1 are i.i.d. from an unspecified distribution P . For a pre-determined
coverage level 1− α ∈ (0, 1), we are motivated to construct a band Γ̂n(.), based on the training data such that, for a
new i.i.d. point (test point) (Xn+1, Yn+1), we have,

P
[
Yn+1 ∈ Γ̂(Xn+1)

]
≥ 1− α (1)

where, the probability is taken over the n + 1 i.i.d. points {(Xi, Yi)}n+1
i=1 ∼ P and for a point x ∈ Rd, and

Γ̂ : Rd → {intervals in R}. The aim behind conformal prediction (Vovk (2005)) is for (1) to hold without any
assumptions on P and for constructing Γ̂ which has finite-sample (non-asymptotic) validity. A confidence predictor is
valid if in the long run, the relative frequency of errors does not exceed α.

An important property of conformal prediction is that it dynamically adjusts the prediction intervals for a new test point
based on the observations in hand sequentially, which makes the problem valid and also prevents overfitting.

To highlight the requiement of a revised prediction interval generation method, we take a look at the following example
from Lei et al. (2018). In the regression problem, we consider a naive method for prediction interval construction for
Yn+1 based on Xn+1. Recall {(Xi, Yi)}n+1

i=1
i.i.d.∼ P . If µ̂ is the estimator for the population regression function, a

naive prediction interval can be as follows:

Γnaive(Xn+1) =
[
µ̂(Xn+1)− F̂−1

n (1− α), µ̂(Xn+1) + F̂−1
n (1− α)

]
(2)

where, F̂n is the empirical distribution function of the fitted residual |Yi − µ̂(Xi)|, i = 1, . . . , n and F̂−1
n (1− α) is

the (1− α)-quantile for F̂n. This procedure yields prediction intervals which are approximately valid but requires the
∗Email: shubha.banerjee@pitt.edu



Conformalized Survival Analysis: A Review STAT 2261- SURVIVAL ANALYSIS

estimator µ̂ to be accurate enough for the estimated F̂−1
n (1− α) to be close to the (1− α)-quantile of the population

residuals |Yi − µ(Xi)|. As can be seen in literature, ensuring such a property requires appropriate regularity conditions
on underlying data distribution P and µ̂, for example, a model which has been specified correctly and in case we are
looking at model selection with constraints, the choice of a tuning parameter.

The naive method (2) generally yields narrower prediction intervals (Morzuch (2000)) and can lead to serious un-
dercoverage problems. This happens since often, the fitted residual distribution is biased downwards. Conformal
prediction intervals, by construction, overcomes the deficiencies of such intervals and are guaranteed to deliver proper
finite-sample coverage without any assumptions on P and µ̂.

We will briefly talk about the important general steps in conformal prediction before moving on to the topic of our
focus. First we denote Quantile(β;F ) to be the level β quantile of a distribution F , i.e., Quantile(β;F ) = inf{z :
P[Z ≤ z] ≥ β} for Z ∼ F . We allow the quantiles to be defined for distributions F on the augmented real line
R∪{∞}. For a dataset v1:n = {v1, . . . , vn}, we denote quantiles of the empirical distribution as: Quantile(β; v1:n) =
Quantile(β;n−1

∑n
i=1 δvi

), where δa denotes a point mass at a. Tibshirani et al. (2019) showed that if V1, . . . , Vn+1

are exchangeable random variables with no ties, then for any β ∈ (0, 1), we have,

β ≤ P {Vn+1 ≤ Quantile(β;V1:n ∪ {∞})} ≤ β +
1

n+ 1
(3)

For sake of simplicity of notation, we define the following, Zi = (Xi, Yi), i = 1, . . . , n and Z = {Zi}ni=1. We choose
a score function S which depends on a chosen point (x, y) and the dataset Z. A low value of S((x, y), Z) indicates
that the point (x, y) conforms to Z, with high value indicating that (x, y) is atypical relative to the points in Z. In the
regression problem, S can be as follows: S((x, y), Z) = |y − µ̂(x)|, where we implement a prediction algorithm on Z
to get µ̂ : Rd → R, the fitted regression function. Now, given x ∈ Rd, we construct the conformal prediction interval
Γ̂n(x) by repeating the following procedure ∀y ∈ R. We calculate the nonconformity scores

V
(x,y)
i = S(Zi, Z1:n ∪ {(x, y)}), i = 1, . . . , n, & V

(x,y)
n+1 = S((x, y), Z1:n ∪ {(x, y)}) (4)

we include y in Γ̂(x) if V (x,y)
n+1 ≤ Quantile(1− α;V

(x,y)
1:n ∪ {∞}), where, V (x,y)

1:n = {V (x,y)
1 , . . . , V

(x,y)
n }.

We get the following result from Vovk (2005) and Lei et al. (2018).
Theorem 1. Assume that (Xi, Yi) ∈ Rd × R, i = 1, . . . , n+ 1are exchangeable. For any score function S and any
α ∈ (0, 1), define the conformal band based on the first n samples) at x ∈ Rd by

Γ̂n(x) =
{
y ∈ R : V

(x,y)
n+1 ≤ Quantile(1− α;V

(x,y)
1:n ∪ {∞})

}
(5)

where V
(x,y)
i , i = 1, . . . , n+ 1 are defined as in (4), then Γ̂n satisfies

P
{
Yn+1 ∈ Γ̂n(Xn+1)

}
≥ 1− α

Furthermore, if ties between V
(Xn+1,Yn+1)
1 , . . . , V

(Xn+1,Yn+1)
n+1 occur with probability 0, then this probability is upper

bounded by 1− α+ 1/(n+ 1).

This establishes the validity and exact coverage properties of conformal prediction which makes the method so powerful.
Motivated by this, we shift our focus to using this method to deal with survival data.

1.2 Survival Analysis

In time-sensitive data on diagnosis of any disease to an event time which is generally fatality from the particular disease,
it is of crucial importance to have a proper prediction of survival times based on a set of covariates which might be
useful in alloction of resources to mitigate the fatal effect of the disease. One of the motivation behind survival analysis
is to infer on survival function i.e. the probability that a patient will survive beyond any specified time. The survival
times are often censored and thus it is an of consequence to come up with valid predictions for survival functions from
censored data. The Kaplan-Meier curve can be used to generate estimates for survival function when population under
study is group of patients with certain characteristics. While Kaplan-Meier curve does not make any distributional
assumptions on the survival times, it requires suffiiently many events in each subgroups and thus can only be applied to
a handful of subpopulations.

While point-predictions for survival times are of important, for decision-making in sensitive and uncertain environments,
it is perhaps more useful to to have guaranteed coverages with prediction intervals for uncensored survival times. If
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the intervals are wide, it reflects on an inherent lack of knowledge and a conservative coverage. Again, as stated in
subsection 1.1, it is of interest to generate valid prediction bands for any survival analysis procedure with valid marginal
coverage (which can also be extended to approximately valid conditional coverage), i.e., prediction bands which will
contain the true value of the survival time on an average across all covariate configurations in the long run.

The paper by Candès et al. (2023), on which this project is based on, extends conformal inference to handle right-
censored outcomes in the setting of Type-I censoring, where it is assumed that censoring time is observed for every
unit while outcome is observed only for uncensored units. We learn about generation of a covariate-dependent lower
prediction bound (LPB) on uncensored survival time (can be interpretated as a one-sided (1−α)-prediction interval). It
is worthwhille to note that we only focus on a LPB since we want to be more cautious with an earlier survival time
prediction which might be beneficial when dealing with critical care, even though the process is a conservative analysis
of survival time.

2 Prediction Intervals for survival times

For i = 1, . . . , n, let Xi be the vector of covariates, Ci be the censoring time and Ti be the survival time for the ith unit
or patient. We further assume {(Xi, Ci, Ti)}ni=1

i.i.d.∼ (X,C, T ). We consider Type-I right-censoring, i.e., for each unit
i, we observe the vector Xi, censoring time Ci and the censored survival time T̃i, defined as follows:

T̃i = min{Ti, Ci}
For example, Ti measures time lapse between the admission into hospital and death, Ci measires time lapse betwen
admission into hospital and the day data analysis is conducted and T̃i = Ti if the i-th patient died before the day of data
analysis and T̃ = Ci if the patient survives beyond that day.

The problem with trying to perform an exact analysis of T is that in our observed data, some of the information is
censored and all we observe is a censored time and thus, we proceed by imposing constraints on the relationship
between T and C. We focus on two assumptions of conditionally independence censoring (Kalbfleisch and Prentice
(2011)) and completely independent censoring.
Assumption 1 (Conditionally Independent Censoring).

T ⊥⊥ C | X (6)

This assumes that there exists no unmeasured confounders which affects the survival and censoring time. We may also
assume a more stronger case where both survival time and covariates are independent of censoring time.
Assumption 2 (Completely Independent Censoring).

(T,X) ⊥⊥ C (7)

2.1 Naive Lower Prediction Bounds

We note that our main goal is to generate a covariate-dependent LPB for a conservative prediction of the uncensored
survival time T . We first focus on the procedure of naively generating a LPB. Let L̂ be a generic LPB estimated using
th observed data {(Xi, Ci, Ti)}ni=1. We say that a LPB is calibrated if it satisfies the following coverage condition:

P[T ≥ L̂(X)] ≥ 1− α (8)

where α ∈ (0, 1) and the probability is calculated both over L̂ and future unit (X,C, T ) which is independent of
{(Xi, Ci, Ti)}ni=1.

The interesting part is to notice that since T̃ ≤ T , any calibrated LPB on the censored time T̃ is also a calibrated LPB
o the uncensored survival time T . Thus, a naive LPB could be constructed using only the censored survival time T̃
(thereby disregarding the individual censoring times completely). There are many procedures in literature which rely on
the i.i.d. property of the samples (Xi, T̃i) to construct distribution-free calibrated LPB on T̃ (see Vovk (2005), Lei et al.
(2018) and the references therein).

The first theorem in the paper establishes that all distribution-free calibrated LPBs on T must by LPBs on T̃ .

Theorem 2. Take X ∈ Rp and C ≥ 0, T ≥ 0. Assume that L̂(.) is a calibrated LPB on T for all joint distributions of
(X,C, T ) obeying the conditionally independent censoring assumption (6) with X being continuous and (T,C) being
continuous or discrete. Then for any such distribution,

P[T̃ ≥ L̂(X)] ≥ 1− α.
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It can be intuitively understood that even if we have a calibrated LPB, a LPB constructed on T̃ must be somewhat
conservative because of the censoring mechanism. To demonstrate this behaviour, we identify that the oracle LPB on
T̃ is the α-th conditional quantile of T̃ |X , which we denote by q̃α(X). Similarly, let qα(X) be the oracle LPB on T .
Under conditionally independence censoring mechanism, we see the following:

P[T ≥ qα(x)|X = x] = 1− α = P[T̃ ≥ q̃α(x)|X = x]

= P[T ≥ q̃α(x)|X = x] · P[C ≥ q̃α(x)|X = x] [∵ T̃ = min{T,C}]

The censoring mechanism arbitrarily affects the coverage of the naive LPB. In a very simple example, assume
T ∼ Exp(1) and C ∼ Exp(λ), then, it is very easy to verify that qα = − log(1−α) and q̃α(X) = − log(1−α)/(1+λ).
Thus, if the censoring times are small, there is a wider gap between q̃α(x) and qα(x). Thus, if we do not take into
account the censoring times, we might end up with a very conservative LPB.

It is worthwhile to think that if we have smaller censoring time, more often than now we will have less observed survival
time which will limit us to analyse the target variable properly and thus we end up having more conservative LPB to
make up for the issue of more censored observations.

Theorem 2 states that only under conditionally independent censoring assumption is the calibrated LPB on T also a
calibrated LPB on T̃ . We proceed by making more assumptions on the distributions to try overcoming the just explained
limitations of the naive LPB.

2.2 Leveraging the Censoring Mechanism

Since we now know that the problem with the naive approach is that with smaller censoring times it becomes more
conservative, a plausible way to prevent this issue might be to discard units with small values of C. We consider a
threshold c0 and use this to extract a subpopulation on which C ≥ c0. We note that this selection leads to a distributional

shift between the subpopulation and the whole population as in (X,C, T )
d

̸= (X,C, T )|C ≥ c0.

We now study this distributional shift in more detail. The joint distribution of (X, T̃ ) on the whole population
is PX × PT̃ |X and that of the subpopulation is P(X,T̃ )|X≥c0

= PX|C≥c0 × PT̃ |X,C≥c0
. We further observe that

PT̃ |X ̸= PT̃ |X,C≥c0
even under completely independent censoring (7) ((T,X) ⊥⊥ C ̸⇒ T̃ ⊥⊥ C |X). What it means is

that both covariate distribution and the conditional distribution of T̃ |X is different in the two populations.

We consider a modified secondary censoring scheme where the outcome is T̃ ∧ c0 (a ∧ b = min{a, b}). It is very clear
to see the following:

P(X,T̃∧c0)|C≥c0
= PX|C≥c0 × PT̃∧c0|X,C≥c0

= PX|C≥c0 × PT∧c0|X,C≥c0 [∵ T ∧ c0 = T̃ ∧ c0, if C ≥ c0]

= PX|C≥c0 × PT∧c0|X [Assumption (6)] (9)

Further we can see the on the whole population the distribution of (X,T ∧ c0) can be written as,

P(X,T∧c0) = PX × PT∧c0|X (10)

Thus clearly from Equations (10) and (9), introduction of a secondary censoring scheme on the subpopulation only
leads to a covariate shift.

Following Tibshirani et al. (2019), we take a look at the likelihood ratio between the two covariate distribution and use
it to carefully reweight the samples to adjust for the bias induced by the distribution shift between the selected samples
and the target population.

dPX

dPX|C≥c0

(x) =
P[X = x]

P[X|C ≥ c0]
=

P[C ≥ c0]

P[C ≥ c0|X = x]
(11)

We will apply one-sided version of weighted conformal inference (Tibshirani et al. (2019)) which gives a calibrated
LBP on T ∧ c0 and thereby a calibrated LPB on T . This effectively allows us to choose a large threshold c0 if we have
sufficiently many units with large values of C to reduce loss of power caused by censoring.

From here on, we will refer to the denominator of (11), i.e., P[C ≥ c0|X = x] as the censoring mechanism and denote
it by c(x; c0). This is the conditional survival function of C evaluated at c0. It is easy to see that under Type-I censoring,
the Ci’s are fully observed while Ti’s are partially observed and thus estimation of the conditional survival function of
C is a relatively easier task.
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3 Conformal Inference for censored outcomes

3.1 Weighted Conformal Inference

Understanding the relationship between Eq. (9) and (10), we now want to construct LPB L̂(.) on T ∧ c0 from the
training samples {(Xi, T̃i ∧ c0)Ci≥c0} = {(Xi, Ti ∧ c0)Ci≥c0} such that P[T ∧ c0 ≥ L̂(X)] ≥ 1 − α. Note that
since T ∧ c0 ≤ T , L̂(.) is also a calibrated LPB on T . We consider c0 to be fixed for now, later the paper discusses a
data-adaptive approach to choosing an optimal c0.

The interesting part of this paper is the way of dealing with covariate shifts using technique introduced in Tibshirani
et al. (2019). It follows from an intuitive idea: Assume {(Xi, Yi)}ni=1

i.i.d.∼ PX ×PY |X and our objective is to construct
prediction intervals for test points drawn from the target distribution QX × PY |X , then using weighted conformal
inference, we get prediction intervals Γ̂(.) such that P(X,Y )∼QX×PY |X [Y ∈ Γ̂] ≥ 1− α, with probability taken over
both training set and test point (X,Y ) and assuming that we know w(x) = dQX(x)/dPX(x). In our case, the target is
T ∧ c0 and the covariate shift is w(x) = P[C ≥ c0]/c(x, c0) as we get in (11).

Algorithm 1 Weighted Conformalized Survival Analysis

Input: Level α; Data Z = (Xi, T̃i, Ci)i∈I ; Testing point x;

Function V (x, y;D) to compute the conformity score between (x, y) and data D;
Function ŵ(x,D) to fit the weight function at x using D;
Function C(D) to select the threshold c0 using D.

Procedure:
1. Split Z into training fold Ztr ≜ (Xi, Yi)i∈Itr

and a calibration fold Zca ≜ (Xi, Yi)i∈Ica
.

2. Select c0 = C(Ztr) and let I ′
ca = {i ∈ Ica : Ci ≥ c0}.

3. For each i ∈ I ′
ca, compute the conformity score Vi = V (Xi, T̃i ∧ c0;Ztr).

4. For each i ∈ I ′
ca, compute the weight Wi = ŵ(Xi;Ztr) ∈ [0,∞).

5. Compute the weights p̂i(x) = Wi∑
i∈I′

ca
Wi+ŵ(x;Ztr)

and p̂∞(x) = ŵ(x;Ztr)∑
i∈I′

ca
Wi+ŵ(x;Ztr)

.

6. Compute η(x) = Quantile
(
1− α;

∑
i∈I′

ca
p̂i(x)δVi + p̂∞(x)δ∞

)
.

Output: L̂(x) = inf{y : V (x, y;Ztr) ≤ η(x)} ∧ c0

In Algorithm 1, if the covariate shift w(x) is unknown, it is estimated using the training fold. The algorithm also
works in extreme cases, for example, if ŵ(x;Ztr) = ∞, then, by definition, p̂i(x) = 0 (i ∈ Zca) and p̂∞(x) = 1,
which yields the estimated LPB L̂(x) = −∞. By construction, we can also see that even though QX is not absolutely
continuous with respect to PX (Xi ∼ PX), we have Wi ∈ [0,∞).

It is also clear, from the construction of the weights p̂i that η(x) is invariant to positive rescalings of ŵ(x). Thus, we
can set w(x) = 1/ĉ(x; c0).

3.2 Choice of conformity scores

Although Algorithm 1 does not require a specific conformity score, we discuss three popular choices for V (x, y;D)
from literature:

• Conformalized Mean Regression (CMR)- The conformity scores are defined as V (x, y;Z)tr = m̂(x) − y.
Here, m̂(.) is the estimate of the conditional mean of Y given X . The resulting LPB is (m̂(x)− η(x)) ∧ c0.

• Conformalized Quantile Regression (CQR)- The conformity scores are defined as V (x, y;Z+ tr) = q̂α(x)−y.
Here, q̂α(.) is an estimate of the α-th conditional quantile of Y given X . The resulting LPB is (q̂α(x) −
η(x)) ∧ c0. This is more adaptive and robust than CMR and has better conditional coverage.
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• Conformalized Distribution Regression (CDR)- The conformity scores are defined by V (x, y;Ztr) = α −
F̂Y |X=x(y). Here, F̂Y |X=x is the estimate of conditional distribution of Y given X . The resulting LPB is
F̂−1
Y |X=x(α− η(x)) ∧ c0 (i.e., the (α− η)-th quantile of Y given X).

Further, under completely censoring assumption, we can see that P[C ≥ c0|X] = P[C ≥ c0] almost surely. Thus,
based on the discussion above, we can easily set ŵ(x) = w(x) ≡ 1. This in turn yields calibrated LPB without any
distributional assumption.
Theorem 3. Let c0 be any threshold independent of Zca. Consider Algorithm 1 with Yi = Ti ∧ c0 and ŵ(x;D) ≡ 1.
Under the completely independent censoring assumption, L̂(X) is calibrated.

4 Discussion

4.1 Doubly Robust Prediction Bounds

As we can see, the estimation of the censoring mechamism is not an issue under the more difficult assumption of
independent complete censoring; however it does needs to be estimated if we work under the conditionally independent
censoring regime. We can apply any technique in literature for estimation of c(x; c0) = P[C ≥ c0|X = x] (for eg.
kernel methods or distribution boosting, see papers cited in Candès et al. (2023)).

An important result based on the prediction problem which requires estimation of both of the above mentioned quantities
is one stated for two-sided weighted split-CQR prediction bounds in Lei and Candès (2021). It states that in this case,
the intervals satisfy a doubly robust property which states the following: the average coverage is guaranteed if either the
covariate shift or the conditional quantiles are estimated well, and conditional coverage is guaranteed if the latter is true.

In this paper, the authors state asymptotic results (with elaborate extensions in Supplementary materials) for CQR-LPB
and CDR-LPB under model oriented setups. Under proper regularity conditions on the censoring mechanism and the
conditional quantiles (and conditional distribution in case of CDR-LPB), both CQR-LPB and CDR-LPB satisfy the
doubly robust property.

This is an important result since now a researcher can deal with well enough estimation of conditional survival function
and censoring mechanism without having concern for their relative accuracy. The resulting LPB will be calibrated (even
if model, for eg. Cox model, is misspecified).

4.2 Choice of Threshold

As we can clearly see, the threshold c0 is used to decrease the bias induced by low censoring times but at the same time
also controls the size of data we are left with in our study. A large c0 will reduce the gap between the target outcome T
and T ∧ c0 while reducing the sample size required to estimate the censoring mechanism and the conditional survival
function.

We can, in principle, select any value for c0 and get a calibrated LPB. Since we want to be more rigorous, we select a
data-driven threshold to get accurate results.

The idea is to select c0 based on the training fold Ztr to make it independent of the calibration fold. Then, we can
choose c0 applying the following steps:

1. Set a grid of values for c0.
2. Randomly sample a holdout set from Ztr

3. Apply Algorithm 1 on the rest of Ztr for each value of c0 to generate LPBs for each unit in the holdout set.
4. Select c0 which maximizes the average LPBs on the holdout set.

Under suitable conditions, we can choose c0 by using calibration fold Zca and the resulting LPBs will still be calibrated.
To be specific, given a candidate set C for c0, we get:

ĉ0 = argmax
c0∈C

1

|Ica|
∑
i∈Ica

L̂c0(Xi)

Note that we choose the c0 which maximizes the above function since we want a less conservative LPB which is a step
towards generation of a more exactly calibrated LPB (one with almost exact coverage). This ia very computationally
intensive task.
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4.3 Simulation Results

This paper takes into consideration diverse setups to demonstrate the empirical validation of the theoretical results.
CQR- and CDR-LPB is compared with the following alternatives: Cox model, Accelerated Failure Time (AFT) model,
censored quantile regression, censored quantile regression forest and naive CQR. In each experiment, 200 independent
datasets were generated, with training and test sizes being n = 3000 in each dataset.

The covariate vector X ∈ Rp is generated from PX , the survival time T is generated from an AFT model with Gaussian
noise, i.e.,

log T |X ∼ N (µ(X), σ2(X))

The following parameters were set up for the study.

Dimension p PX PC|X µ(x) σ(x)
Uvt. + Homosc. 1 U(0, 4) E(0.4) 2 + 0.37

√
x 1.5

Uvt. + Heterosc. 1 U(0, 4) E(0.4) 2 + 0.37
√
x 1 + x/5

Mvt. + Homosc. 100 U([−1, 1]p) E(0.4) log 2 + 1 + 0.55(x2
1 − x3x5) 1

Mvt. + Heterosc. 100 U([−1, 1]p) E(0.4) log 2 + 1 + 0.55(x2
1 − x3x5) |x10|+ 1

Here, ‘Homosc.’ and ‘Heterosc.’ are short for homoscedastic and heteroscedastic; ‘Uvt.’ and ‘Mvt.’ are short for
univariate and multivariate. U(a, b) denotes uniform distribution on [a, b]; E(λ) denotes exponential distribution with
rate λ.

For each dataset, the empirical coverage of the LPBs (1/ntest)
∑ntest

i=1 1{Ti ≥ L̂(Xi)} is reported. c(x) is estimated
using distribution boosting and the target coverage level is 1−α = 90%. We start by noting that in Figure 1, ‘CQR-cRF’

Figure 1: Empirical 90% coverage of uncensored survival time.

is short for CQR-LPB with censored quantile regression forest; ‘CQR-conTree’ and ‘CDR-conTree’ are short for CQR-
and CDR-LPB with distribution boosting.

We can clearly see that naive CQR is overly conservative, but, both CQR- and CDR-LPB achieve near-exact marginal
coverage. Standard models like Cox model and AFT suffer from undercoverage problems.

5 Conclusion

Conformalized Survival Analysis serves as a powerful tool for generation of prediction bands with near exact coverage.
This is specially useful when dealing with events (typically death due to some disease) which require preventive action
which are time-sensitive in nature. This method can extended to consider both end-of-study censoring caused by trial
termination and loss-to-follow-up censoring caused by unexpected attrition. It can be also extended in dealing with
prediction of counterfactual survival times had the cohort been exposed to a different condition. The process yields
LPBs with near exact empirical coverage as seen in the simulation study and in case of critical events is useful in
yielding LPBs which are not highly conservative which would lead to underestimating the true LPB, which is a problem,
as seen, which affects standard techniques. The consideration of right-censoring is a constrained problem. An area of
interest might be to extend this work to deal with random censoring and generation of prediction bands for uncensored
survival times which are censored in this regime.
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